Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters

Language
Document Type
Year range
1.
J Cardiovasc Dev Dis ; 9(5)2022 Apr 27.
Article in English | MEDLINE | ID: covidwho-1875649

ABSTRACT

The endothelium is composed of a monolayer of endothelial cells, lining the interior surface of blood and lymphatic vessels. Endothelial cells display important homeostatic functions, since they are able to respond to humoral and hemodynamic stimuli. Thus, endothelial dysfunction has been proposed as a key and early pathogenic mechanism in many clinical conditions. Given the relevant repercussions on cardiovascular risk, the complex interplay between endothelial dysfunction and systemic arterial hypertension has been a matter of study in recent years. Numerous articles have been published on this issue, all of which contribute to providing an interesting insight into the molecular mechanisms of endothelial dysfunction in arterial hypertension and its role as a biomarker of inflammation, oxidative stress, and vascular disease. The prognostic and therapeutic implications of endothelial dysfunction have also been analyzed in this clinical setting, with interesting new findings and potential applications in clinical practice and future research. The aim of this review is to summarize the pathophysiology of the relationship between endothelial dysfunction and systemic arterial hypertension, with a focus on the personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction while treating hypertension and cardiovascular comorbidities.

2.
Biomedicines ; 10(4)2022 Mar 30.
Article in English | MEDLINE | ID: covidwho-1820167

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a worldwide emergency, until the declaration of the pandemic in March 2020. SARS-CoV-2 could be responsible for coronavirus disease 2019 (COVID-19), which goes from a flu-like illness to a potentially fatal condition that needs intensive care. Furthermore, the persistence of functional disability and long-term cardiovascular sequelae in COVID-19 survivors suggests that convalescent patients may suffer from post-acute COVID-19 syndrome, requiring long-term care and personalized rehabilitation. However, the pathophysiology of acute and post-acute manifestations of COVID-19 is still under study, as a better comprehension of these mechanisms would ensure more effective personalized therapies. To date, mounting evidence suggests a crucial endothelial contribution to the clinical manifestations of COVID-19, as endothelial cells appear to be a direct or indirect preferential target of the virus. Thus, the dysregulation of many of the homeostatic pathways of the endothelium has emerged as a hallmark of severity in COVID-19. The aim of this review is to summarize the pathophysiology of endothelial dysfunction in COVID-19, with a focus on personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction as an attractive therapeutic option in this clinical setting.

3.
Biomedicines ; 10(4):812, 2022.
Article in English | MDPI | ID: covidwho-1762067

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) generated a worldwide emergency, until the declaration of the pandemic in March 2020. SARS-CoV-2 could be responsible for coronavirus disease 2019 (COVID-19), which goes from a flu-like illness to a potentially fatal condition that needs intensive care. Furthermore, the persistence of functional disability and long-term cardiovascular sequelae in COVID-19 survivors suggests that convalescent patients may suffer from post-acute COVID-19 syndrome, requiring long-term care and personalized rehabilitation. However, the pathophysiology of acute and post-acute manifestations of COVID-19 is still under study, as a better comprehension of these mechanisms would ensure more effective personalized therapies. To date, mounting evidence suggests a crucial endothelial contribution to the clinical manifestations of COVID-19, as endothelial cells appear to be a direct or indirect preferential target of the virus. Thus, the dysregulation of many of the homeostatic pathways of the endothelium has emerged as a hallmark of severity in COVID-19. The aim of this review is to summarize the pathophysiology of endothelial dysfunction in COVID-19, with a focus on personalized pharmacological and rehabilitation strategies targeting endothelial dysfunction as an attractive therapeutic option in this clinical setting.

4.
J Clin Med ; 11(5)2022 Mar 07.
Article in English | MEDLINE | ID: covidwho-1732088

ABSTRACT

BACKGROUND: Endothelial dysfunction has been proposed as the common pathogenic background of most manifestations of coronavirus disease 2019 (COVID-19). Among these, some authors also reported an impaired exercise response during cardiopulmonary exercise testing (CPET). We aimed to explore the potential association between endothelial dysfunction and the reduced CPET performance in COVID-19 survivors. METHODS: 36 consecutive COVID-19 survivors underwent symptom-limited incremental CPET and assessment of endothelium-dependent flow-mediate dilation (FMD) according to standardized protocols. RESULTS: A significantly higher FMD was documented in patients with a preserved, as compared to those with a reduced, exercise capacity (4.11% ± 2.08 vs. 2.54% ± 1.85, p = 0.048), confirmed in a multivariate analysis (ß = 0.899, p = 0.038). In the overall study population, FMD values showed a significant Pearson's correlation with two primary CPET parameters, namely ventilation/carbon dioxide production (VE/VCO2) slope (r = -0.371, p = 0.026) and end-tidal carbon dioxide tension (PETCO2) at peak (r = 0.439, p = 0.007). In multiple linear regressions, FMD was the only independent predictor of VE/VCO2 slope (ß = -1.308, p = 0.029) and peak PETCO2 values (ß = 0.779, p = 0.021). Accordingly, when stratifying our study population based on their ventilatory efficiency, patients with a ventilatory class III-IV (VE/VCO2 slope ≥ 36) exhibited significantly lower FMD values as compared to those with a ventilatory class I-II. CONCLUSIONS: The alteration of endothelial barrier properties in systemic and pulmonary circulation may represent a key pathogenic mechanism of the reduced CPET performance in COVID-19 survivors. Personalized pharmacological and rehabilitation strategies targeting endothelial function may represent an attractive therapeutic option.

SELECTION OF CITATIONS
SEARCH DETAIL